Analysis für Informatik
Analysis für Informatik | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Organisationseinheit Freie Universität Berlin/Mathematik und Informatik/Informatik |
|||||||||||
Ursprung Dies ist ein Verweis auf den Eintrag in inf_bsc_2023 (Analysis für Informatik) |
|||||||||||
Bereich
|
|||||||||||
Zugangsvoraussetzungen Keine |
|||||||||||
Qualifikationsziele Die Studierenden wählen geeignete Verfahren zur Lösung reeller (Un-)Gleichungen aus, bestimmen die Lösung und stellen diese angemessen dar. Sie wenden unterschiedliche Verfahren aus der Analysis auf konkrete Eingaben an und beurteilen die Wahl der Verfahren. Sie können Eigenschaften unterschiedlicher reeller Mengen und Folgen benennen und begründen diese mit Hilfe formaler Argumente. Sie benennen Eigenschaften unterschiedlicher reeller Funktionen und begründen diese mit Hilfe der Differential- und Integralrechnung. Sie sind in der Lage, Grenzwerte, Integrale, Ableitungen und Gradienten zu bestimmen und klassifizieren das Wachstumsverhalten reeller Folgen und Funktionen und vergleichen diese anhand des asymptotischen Wachstums. Sie können Wachstums- und Anfangswertprobleme mit Hilfe von einfachen gewöhnlichen Differentialgleichungen modellieren und bestimmen deren Lösungen. Sie beweisen elementare Aussagen über das Konvergenzverhalten von Folgen und Funktionen. |
|||||||||||
Inhalte Die Studierenden erarbeiten sich zahlreiche Konzepte der eindimensionalen Analysis (z. B. asymptotisches Wachstum; Potenzreihen; Taylorreihen; Konvergenz; Exponential- und Logarithmusfunktion; trigonometrische Funktionen; Stetigkeit). Sie erarbeiten sich die Differential- und Integralrechnung (z. B. Ableitungen und ihre Anwendungen, bestimmtes und unbestimmtes Integral, Hauptsatz der Differential- und Integralrechnung) sowie Differentialgleichungen. Die meisten dieser Konzepte werden an Rechen- oder Beweisaufgaben geübt. Anschließend erarbeiten sie sich Teile der Analysis in höheren Dimensionen (z. B. Ableitungsmatrizen; Gradient; Satz von Fubini; Extremwertberechnung). Sie lernen oder erarbeiten sich exemplarische Anwendungen der Analysis in der Informatik und Bioinformatik (z. B. konvexe Optimierung; Interpolations- und Näherungsverfahren). Auch hier wird weiter an Rechen- oder Beweisaufgaben geübt. |
|||||||||||
Lehr- und Lernformen | Aktive Teilnahme | ||||||||||
Vorlesung 4 SWS Teilnahme empfohlen |
- |
||||||||||
Übung 2 SWS verpflichtete Teilnahme |
Schriftliche Bearbeitung von Übungsaufgaben. Moderation einer Übung oder eines Teils davon. |
||||||||||
Aufwand
|
|||||||||||
Modulprüfung Mündliche Prüfung (ca. 20 Minuten) oder Klausur (90 Minuten); die Klausur kann auch in Form einer elektronischen Prüfungsleistung (90 Minuten) durchgeführt werden. |
|||||||||||
Differenzierte Bewertung differenzierte Bewertung |
|||||||||||
Modulsprache Deutsch |
|||||||||||
Arbeitsaufwand (Stunden) 270 |
|||||||||||
Leistungspunkte (LP) 9 |
|||||||||||
Dauer des Moduls Ein Semester |
|||||||||||
Häufigkeit des Angebots Jedes Wintersemester |
|||||||||||
Verwendbarkeit Bachelorstudiengang Informatik, Bachelorstudiengang Bioinformatik |
|||||||||||
Querverweis zu anderen Studien/Prüfungsordnungen mit dem gleichen Titel |